CST中,如何設置金屬材料表面粗糙度
粗糙的介紹:本文介紹如何添加金屬表面粗糙度。
1) 材料中直接定義
對于lossy metal,最簡單的就是材料定義的時候,添加surface roughness:
這個RMS值是指Gradient Model中的隨機正態(tài)分布方差,參考文獻為:
G. Gold and K. Helmreich, "A Physical Model for Skin Effect in RoughSurfaces“, Proc. 42 European Microwave Conference, 2012
G. Gold and K. Helmreich,Surface Impedance Concept for Modeling Conductor Roughness, IEEE MTT-SInternational Microwave Symposium, 2015
好處就是方便,一個值RMS就可以表示粗糙度,按DINEN ISO 4287測Rq就是了。經常有用戶問到,其他的DIN EN ISO 4287測量值,比如Ra,Rz等,可用用于電磁仿真嗎?由于不能直接轉換成RMS , 無法直接使用。如有計算電磁相關文獻使用Ra,Rz,歡迎留言討論。
Koledintseva,Razmadze, Gafarov, De, Drewniak, Hinaga, PCB Conductor Surface Roughness asa Layer with Effective Material Parameters, Electromagnetic Compatibility(EMC), 2012 IEEE International Symposium 2012
2) 宏創(chuàng)建材料
Macros ->Materials-> Create Tabulated Surface Impedance Material
這個宏會生成lossy metal材料,適合趨膚深度遠大于金屬厚度,或金屬厚度遠大于趨膚深度。換句話說,他在生成lossy metal的時候,低頻模型更加準確,適合高頻低頻共同求解。具體操作先不談,這里只介紹表面粗糙度。
這里有兩個表面粗糙度模型,Hammerstad-Jensen和Causal Huray。HJ歷史較久,是Empirical Model經驗模型,需要經驗矯正因子(correction factors),當然宏內部已經使用了校正因子,不需要用戶定義,只需要用戶輸入DeltaRMS值。
HJ模型一些有效性文獻:.
Hammerstad and O. Jensen, "Accurate Models for Microstrip Computer-Aided Design“, IEEE MTT-S International, 1980
Measurement of High-Frequency Conductivity Affected by Conductor Surface Roughness Using Dielectric Rod Resonator Method”, ToshikiIwai, Daisuke Mizutani and Motoaki Tani, IEEE EMC Dresden, 2015
M.P. Kirley, J. Booske, "Terahertz conductivity of copper surfaces“, IEEE Transactions on Terahertz Science and Technology,Vol. 5, No. 6 November 2015
Huray的雪球模型更詳細表示粗糙表面,需要用戶定義雪球半徑,數(shù)量,及六邊形面積。Huray模型一些有效性文獻:
P.G. Huray et al., Fundamentals of a 3-D snowball model for surface roughness power losses, IEEE Workshop on Signal Propagation on Interconnect,2007
M.V. Lukic and D. S. Filipovic, Modeling of 3-D Surface Roughness Effects With Application to Coaxial Lines, IEEE Trans. Microwave Theory andTechniques, 2007
P.G. Huray et al., “Impact of Copper Surface Texture on Loss: A Model that Works”, in DesignCon 2010 Proceedings, Santa Clara,CA, 2010
更詳細的解釋可見下文:
E. Bogatin, D. DeGroot, P. G. Huray, Y. Shlepnev, “Which one is better? Comparing Options to Describe Frequency Dependent Losses”,DesignCon2013 Proceedings, Santa Clara, CA, 2013.
HJ和Huray模型在時域有個因果性問題,所以這個宏會提升因果性,保證其在時域仿真中的質量,所以這里名字就改成了Causay Huray。